English

If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix. - Mathematics

Advertisements
Advertisements

Question

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.

Solution

7A(I+A)3=7A[I3+A3+3I2A+3IA2]
=7A(I+A3+3A+3A2)                 

=7A(I+A2A+3A+3A2) 

=7A(I+AA+3A+3A)         (A2=A)

=7A(I+A2+6A) 

=7A(I+A+6A) 

=7A(I+7A) 

=7AI7A

=I
7A(I+A)3=I

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A


Choose the correct alternative:

If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______


State whether the following statement is True or False:

If A is non singular, then |A| = 0


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2 


If A is a square matrix, then A – A’ is a ____________.


For any square matrix A, AAT is a ____________.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.


A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are


The number of all possible matrices of order 3/3, with each entry 0 or 1 is


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


If A is a square matrix of order 3, then |2A| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×