मराठी

If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.

उत्तर

7A(I+A)3=7A[I3+A3+3I2A+3IA2]
=7A(I+A3+3A+3A2)                 

=7A(I+A2A+3A+3A2) 

=7A(I+AA+3A+3A)         (A2=A)

=7A(I+A2+6A) 

=7A(I+A+6A) 

=7A(I+7A) 

=7AI7A

=I
7A(I+A)3=I

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


if `A = [(0, -tan  alpha/2), (tan  alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


State whether the following statement is True or False:

If A is non singular, then |A| = 0


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


If A is a square matrix, then A – A’ is a ____________.


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


If A is a square matrix of order 3, then |2A| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×