Advertisements
Advertisements
प्रश्न
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
उत्तर
`A = [(2,-3),(-4,7)]`
|A| = 14 - 12 = 2
`:. A_11 = 7` `A_12 = 4` `A_31 = 3` `A_22 = 2`
`adj(A) = [(A_11,A_22),(A_21,A_22)]^T = [(7,4),(3,2 )]^T = [(7,3),(4,2)]`
`:. A^(-1) = I/(|A|) adj (A) = 1/2 [(7,3),(4,2)]`
L.H.S = `2A^(-1) = [(7,3),(4,2)]`
R.H.S = `9I - A = [(9,0),(0,9)] - [(2,-3),(-4,7)] = [(7,3),(4,2)]`
L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Let A = `[(0,1),(0,0)]`show that (aI+bA)n = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
If A is a square matrix, then A – A’ is a ____________.
For any square matrix A, AAT is a ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are
Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.
If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.
A matrix which is both symmetric and skew symmetric matrix is a ______.