Advertisements
Advertisements
प्रश्न
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
उत्तर
To prove `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
R.H.S : `sin^(-1) (3x - 4x^3)`
Let `x = sin theta`
`=> theta = sin^(-1)x `
Putting this value of x in RHS, we get
`= sin^(-1) (3sin theta - 4sin^3 theta)`
`= sin^(-1) (sin 3theta)` `(∵ sin 3theta = 3sintheta - 4sn^3 theta)`
`= 3theta`
`= 3sin^(-1) x = L.H.S`
Thus, LHS = RHS
Hence Proved
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The minimum value of sinx - cosx is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.