मराठी

Prove that `3sin^(-1)X = Sin^(-1) (3x - 4x^3)`, `X in [-1/2, 1/2]` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`

उत्तर

To prove `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`

R.H.S : `sin^(-1) (3x - 4x^3)`

Let `x = sin theta`

`=> theta = sin^(-1)x `

Putting this value of x in RHS, we get

`= sin^(-1) (3sin theta - 4sin^3 theta)`

`= sin^(-1) (sin 3theta)`        `(∵ sin 3theta  = 3sintheta - 4sn^3 theta)`

`= 3theta`

`= 3sin^(-1) x = L.H.S`

Thus, LHS = RHS
Hence Proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) Delhi Set 1

संबंधित प्रश्‍न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The minimum value of sinx - cosx is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×