Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
पर्याय
no solution
unique solution
two solutions
infinite number of solutions
उत्तर
unique solution
APPEARS IN
संबंधित प्रश्न
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
If cos–1x > sin–1x, then ______.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"^-1 (sqrt3)`
`"cos"^-1 (1/2)`
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`