मराठी

Sin (tan–1 x), | x| < 1 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

sin (tan–1 x), | x| < 1 is equal to ______.

पर्याय

  • `x/(sqrt(1-x^2))`

  • `1/sqrt(1-x^2)`

  • `1/sqrt(1+x^2)`

  • `x/(sqrt(1+ x^2))`

MCQ
रिकाम्या जागा भरा

उत्तर

sin (tan–1 x), | x| < 1 is equal to `underline (x/(sqrt(1+ x^2)))`.

Explanation:

Let tan-1 x = θ 

= x = tan θ, where θ  ∈ `(- pi/2, pi/2)`

∴ `sin (tan^-1x) = sin theta`

Now,

`= sin theta = 1/(cosectheta) = 1/sqrt(1+cot^2theta)`

= `1/sqrt(1+ 1/tan^2theta)`

= `x/(sqrt(x^2 + 1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 15 | पृष्ठ ५२

संबंधित प्रश्‍न

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find: ∫ sin x · log cos x dx


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×