मराठी

If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression. daadaadaadanantan[tan-1(d1+a1a2)+tan-1(d21+a2a3)+tan-1(d1+a3a4)+...+tan-1(d1+an - Mathematics

Advertisements
Advertisements

प्रश्न

If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`

बेरीज

उत्तर

If a1, a2, a3, ..., an are the terms of an arithmetic progression

∴ d = a2 – a1

= a3 – a2

= a4 – a3 ....

∴ `tan[tan^-1 (("a"_2 - "a"_1)/(1 + "a"_1"a"_2)) + tan^-1 (("a"_3 - "a"_2)/(1 + "a"_2 "a"_3)) + tan^-1 (("a"_4 - "a"_3)/(1 + "a"_3 "a"_4)) + ...... + tan^-1  (("a"_"n" - "a"_("n" - 1))/(1 + "a"_("n" - 1) * "a"_"n"))]``

⇒ tan [(tan–1 a2 – tan–1 a1) + (tan–1 a3 – tan–1 a2) + (tan–1 a4 – tan–1 a3) + ... + (tan–1 an – tan–1 an – 1)]  .....`[because tan^-1  (x - y)/(1 + xy) = tan^-1x - tan^-1y]`

⇒ tan [(tan–1 a2 – tan–1 a1 + tan–1 a3 – tan–1 a2 + tan–1 a4 – tan–1 a3 + ... + tan–1 an – tan–1 an – 1]

⇒ tan [tan–1 an – tan–1 a1]

⇒ `tan[tan^-1 (("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n"))]`

⇒ `("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n")`  .....[∵ tan (tan–1x) = x]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 19 | पृष्ठ ३७

संबंधित प्रश्‍न

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"cos"^-1 (1/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×