मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the value of the expression in terms of x , with the help of a reference triangle sin (cos–1(1 – x)) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))

बेरीज

उत्तर

sin (cos–1(1 – x)) = `sin[cos^-1 ("Adj"/"Hyp")]`

`[because cos ("Adj"/"HyP") = (1 - x)/1]`

Adj = 1 – x

Hyp = 1

Opp = `sqrt(1^2 - (1 - x)^2`

= `sqrt(1 - (1 + x^2 - 2x))`

= `sqrt(1 - 1 - x^2 + 2x)`

= `sqrt(2x - x^2`

`sin("Opp"/"Hyp") = sqrt(2x - x^2)/1`

= `sqrt(2x - x^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.5 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 2. (i) | पृष्ठ १६६

संबंधित प्रश्‍न

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If 3 tan–1x + cot–1x = π, then x equals ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×