Advertisements
Advertisements
प्रश्न
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
उत्तर
sin (cos–1(1 – x)) = `sin[cos^-1 ("Adj"/"Hyp")]`
`[because cos ("Adj"/"HyP") = (1 - x)/1]`
Adj = 1 – x
Hyp = 1
Opp = `sqrt(1^2 - (1 - x)^2`
= `sqrt(1 - (1 + x^2 - 2x))`
= `sqrt(1 - 1 - x^2 + 2x)`
= `sqrt(2x - x^2`
`sin("Opp"/"Hyp") = sqrt(2x - x^2)/1`
= `sqrt(2x - x^2)`
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is