मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the value of the expression in terms of x, with the help of a reference triangle cos (tan–1 (3x – 1)) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))

बेरीज

उत्तर

cos (tan–1 (3x – 1)) = `cos["opp"/"Hyp"]`

Let θ = tan1(3x – 1)

tan θ = 3x – 1

1 + tan2θ = 1 + (3x – 1)²

sec2θ = 9x2 – 6x + 2

sec θ = `sqrt(9x^2- 6x + 2)`

cos θ = `1/sqrt(9x^2 - 6x + 2)`

⇒ cos (tan1(3x – 1)) = `1/sqrt(9x^2 - 6x + 2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.5 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 2. (ii) | पृष्ठ १६६

संबंधित प्रश्‍न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Prove that cot–17 + cot–18 + cot–118 = cot–13


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


`"cos"^-1 (1/2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×