Advertisements
Advertisements
प्रश्न
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
उत्तर
`tan^(-1) (tan (3pi)/4)`
We know that tan−1 (tan x) = x if x in `(-pi/2, pi/2)` which is the principal value branch of tan−1x.
Here `(3pi)/4 !in ((-pi)/2, pi/2)`
Now , `tan^(-1) (tan (3pi)/4)` can be witten as
`tan^(-1) (tan (3pi)/4) `
`= tan^(-1) [-tan ((-3pi)/4)]`
` = tan^(-1) [-tan(pi - pi/4)]`
`= tan^(-1) [-tan pi/4] `
`= tan^(-1) [tan(-pi/4)] " where " - pi/4 in ((-pi)/2, pi/2)`
`:. tan^(-1) (tan (3pi)/4)`
` = tan^(-1) [tan((-pi)/4)]`
` = (-pi)/4`
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If 3 tan–1x + cot–1x = π, then x equals ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If cos–1x > sin–1x, then ______.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"tan"^-1 (sqrt3)`
`"cos"^-1 (1/2)`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.