मराठी

Find the value of the given expression. tan-1(tan 3π4) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`

बेरीज

उत्तर

`tan^(-1) (tan  (3pi)/4)`

We know that tan−1 (tan x) = x if x in `(-pi/2, pi/2)` which is the principal value branch of tan−1x.

Here `(3pi)/4  !in ((-pi)/2, pi/2)`

Now , `tan^(-1) (tan  (3pi)/4)` can be witten as 

`tan^(-1) (tan  (3pi)/4) `

`= tan^(-1) [-tan  ((-3pi)/4)]`

` = tan^(-1) [-tan(pi - pi/4)]`

`= tan^(-1) [-tan  pi/4] `

`= tan^(-1) [tan(-pi/4)] " where " - pi/4 in ((-pi)/2, pi/2)`

`:. tan^(-1) (tan  (3pi)/4)`

` = tan^(-1) [tan((-pi)/4)]`

` = (-pi)/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.2 [पृष्ठ ४८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 17 | पृष्ठ ४८

संबंधित प्रश्‍न

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If 3 tan–1x + cot–1x = π, then x equals ______.


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


If cos–1x > sin–1x, then ______.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"tan"^-1 (sqrt3)`


`"cos"^-1 (1/2)`


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×