Advertisements
Advertisements
प्रश्न
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
उत्तर
We have `tan(1/2 sin^-1 3/4)`
Let `1/2 sin^-1 3/4` = θ
⇒ `sin^-1 3/4` = 2θ
⇒ sin 2θ = `3/4`
⇒ `(2 tan theta)/(1 + tan^2theta) = 3/4`
⇒ `3 tan theta^2 - 8` and θ ++ 3 = 0
⇒ tan θ = `(8 +- sqrt(64 - 36))/6`
⇒ tan θ = `(8 +- sqrt(28))/6 = (8 +- sqrt(7))/6 = (4 + sqrt(7))/3`
Now `- pi/2 ≤ sin^-1 3/4 ≤ pi/2`
⇒ `(-pi)/2 ≤ 1/2 sin^-1 3/4 ≤ pi/2`
∴ `tan((-pi)/2) ≤ tan(1/2(sin^-1 3/4)) ≤ tan pi/4`
⇒ `-1 ≤ tan (1/2 sin^-1 3/4) ≤ 1`
⇒ tan θ = `(4 - sqrt(7))/3` ....`(tan theta = (4 + sqrt(7))/3 > 1, "which is not possible")`
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If 3 tan–1x + cot–1x = π, then x equals ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.