Advertisements
Advertisements
प्रश्न
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
उत्तर
Let x = tan θ. Then, θ = tan−1 x.
`:. sin^(-1) (2x)/(1+x^2 ) `
`= sin^(-1) ((2tan theta)/(1 + tan^2 theta)) `
`= sin^(-1) (sin 2 theta)`
` = 2theta `
`= 2 tan^(-1) x`
Let y = tan Φ. Then, Φ = tan−1 y.
`:. cos^(-1) (1 - y^2)/(1+ y^2)`
` = cos^(-1) ((1 - tan^2 phi)/(1+tan^2 phi))`
` = cos^(-1)(cos 2phi) `
`= 2phi `
`= 2 tan^(-1) y`
`:. tan 1/2 [sin^(-1) "2x"/(1+x^2) + cos^(-1) (1-y^2)/(1+y^2)]`
`= tan 1/2 [2tan^(-1) x + 2tan^(-1) y]`
`= tan[tan^(-1) x + tan^(-1) y]`
`= tan[tan^(-1) ((x+y)/(1-xy))]`
`= (x+y)/(1-xy)`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate tan (tan–1(– 4)).
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The maximum value of sinx + cosx is ____________.
The minimum value of sinx - cosx is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
sin (tan−1 x), where |x| < 1, is equal to:
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"sin"^-1 (1/sqrt2)`
`"tan"^-1 (sqrt3)`
`"cos"^-1 (1/2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`