Advertisements
Advertisements
प्रश्न
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
उत्तर
Given:
\[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .........(1)
\[cos\theta = \sin\left( \frac{\pi}{2} - \theta \right)\]
\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \frac{\pi}{2} - \tan^{- 1} x \right)\]
\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \cot^{- 1} x \right)\]
Substituting the value of
\[\sin\left( \cot^{- 1} x \right) = \sin\left( \cot^{- 1} \frac{3}{4} \right)\]
\[ \Rightarrow x = \frac{3}{4}\]
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
sin (tan–1 x), | x| < 1 is equal to ______.
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`