मराठी

Solve for X : Cos ( Tan − 1 X ) = Sin ( Cot − 1 3 4 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .

उत्तर

Given: 

\[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\]      .........(1)

\[cos\theta = \sin\left( \frac{\pi}{2} - \theta \right)\]

\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \frac{\pi}{2} - \tan^{- 1} x \right)\]

\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \cot^{- 1} x \right)\]

Substituting the value of 

\[\cos\left( \tan^{- 1} x \right)\]  in equation (1), we get:

\[\sin\left( \cot^{- 1} x \right) = \sin\left( \cot^{- 1} \frac{3}{4} \right)\]

\[ \Rightarrow x = \frac{3}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 1

संबंधित प्रश्‍न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


sin (tan–1 x), | x| < 1 is equal to ______.


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×