Advertisements
Advertisements
प्रश्न
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
उत्तर
Solving L.H.S, we get:
\[\cot^{- 1} 7 + \cot^{- 1} 8 + \cot^{- 1} 18 = \tan^{- 1} \frac{1}{7} + \tan^{- 1} \frac{1}{8} + \tan^{- 1} \frac{1}{18}\]
\[\left\{ \text { Using, }\tan^{- 1} A + \tan^{- 1} B = \tan^{- 1} \left( \frac{A + B}{1 - AB} \right) \right\}\]
\[ = \tan^{- 1} \left( \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7}\left( \frac{1}{8} \right)} \right) + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \left( \frac{15}{56 - 1} \right) + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \frac{3}{11} + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11} + \frac{1}{18}}{1 - \left( \frac{3}{11} \right)\frac{1}{18}} \right)\]
\[ = \tan^{- 1} \left( \frac{54 + 11}{198 - 3} \right)\]
\[ = \tan^{- 1} \left( \frac{65}{195} \right)\]
\[ = \tan^{- 1} \frac{1}{3}\]
\[ = \cot^{- 1} \left( 3 \right) = RHS\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Evaluate cot(tan−1(2x) + cot−1(2x))
Evaluate:
`cos[tan^-1 (3/4)]`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of y = cos–1(x2 – 4) is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`"sin"^-1 (-1/2)`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Values of tan–1 – sec–1(–2) is equal to
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.