हिंदी

Prove That: Cot−1 7 + Cot​−1 8 + Cot​−1 18 = Cot​−1 3 . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .

उत्तर

Solving L.H.S, we get:

\[\cot^{- 1} 7 + \cot^{- 1} 8 + \cot^{- 1} 18 = \tan^{- 1} \frac{1}{7} + \tan^{- 1} \frac{1}{8} + \tan^{- 1} \frac{1}{18}\]

\[\left\{ \text { Using, }\tan^{- 1} A + \tan^{- 1} B = \tan^{- 1} \left( \frac{A + B}{1 - AB} \right) \right\}\]

\[ = \tan^{- 1} \left( \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7}\left( \frac{1}{8} \right)} \right) + \tan^{- 1} \frac{1}{18}\]

\[ = \tan^{- 1} \left( \frac{15}{56 - 1} \right) + \tan^{- 1} \frac{1}{18}\]

\[ = \tan^{- 1} \frac{3}{11} + \tan^{- 1} \frac{1}{18}\]

\[ = \tan^{- 1} \left( \frac{\frac{3}{11} + \frac{1}{18}}{1 - \left( \frac{3}{11} \right)\frac{1}{18}} \right)\]

\[ = \tan^{- 1} \left( \frac{54 + 11}{198 - 3} \right)\]

\[ = \tan^{- 1} \left( \frac{65}{195} \right)\]

\[ = \tan^{- 1} \frac{1}{3}\]

\[ = \cot^{- 1} \left( 3 \right) = RHS\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: cos- 1`(-1/2)`


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Find the principal value of `tan^-1 (sqrt(3))`


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


`"cos"  2 theta` is not equal to ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


Domain and Rariges of cos–1 is:-


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


what is the value of `cos^-1 (cos  (13pi)/6)`


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×