Advertisements
Advertisements
प्रश्न
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
उत्तर
Solving L.H.S, we get:
\[\cot^{- 1} 7 + \cot^{- 1} 8 + \cot^{- 1} 18 = \tan^{- 1} \frac{1}{7} + \tan^{- 1} \frac{1}{8} + \tan^{- 1} \frac{1}{18}\]
\[\left\{ \text { Using, }\tan^{- 1} A + \tan^{- 1} B = \tan^{- 1} \left( \frac{A + B}{1 - AB} \right) \right\}\]
\[ = \tan^{- 1} \left( \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7}\left( \frac{1}{8} \right)} \right) + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \left( \frac{15}{56 - 1} \right) + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \frac{3}{11} + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11} + \frac{1}{18}}{1 - \left( \frac{3}{11} \right)\frac{1}{18}} \right)\]
\[ = \tan^{- 1} \left( \frac{54 + 11}{198 - 3} \right)\]
\[ = \tan^{- 1} \left( \frac{65}{195} \right)\]
\[ = \tan^{- 1} \frac{1}{3}\]
\[ = \cot^{- 1} \left( 3 \right) = RHS\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: cos- 1`(-1/2)`
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `tan^-1 (sqrt(3))`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
Domain and Rariges of cos–1 is:-
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.