Advertisements
Advertisements
प्रश्न
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
विकल्प
0
– 3
`-1/3`
`1/2`
उत्तर
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = `bb(1/2)`.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of tan−1 (−1)
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
If sin−1 x = y, then
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Evaluate:
`sin[cos^-1 (3/5)]`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
cosec-1 (2)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Find the principal value of `cos^-1 sqrt(3)/2`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
sin[3 sin-1 (0.4)] = ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"cos" 2 theta` is not equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
`"sin"^-1 (1/sqrt2)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
Find the principal value of `tan^-1 (sqrt(3))`
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f'(x) = x–1, then find f(x)
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
cos–1(cos10) is equal to ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If cos–1 x > sin–1 x, then ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Solve for x:
5tan–1x + 3cot–1x = 2π
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.