हिंदी

If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.

विकल्प

  • 0

  • – 3

  • `-1/3`

  • `1/2`

MCQ
रिक्त स्थान भरें

उत्तर

If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = `bb(1/2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of tan−1 (−1)


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

If sin−1 x = y, then


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


Find the principal solutions of the following equation:

cot 2θ = 0.


The principal value of cos−1`(-1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate:

`sin[cos^-1 (3/5)]`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Find the principal value of the following:

cosec-1 (2)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Find the principal value of `cos^-1  sqrt(3)/2`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


sin[3 sin-1 (0.4)] = ______.


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


`tan[2tan^-1 (1/3) - pi/4]` = ______.


The value of cot (- 1110°) is equal to ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


`"cos"  2 theta` is not equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


`"sin"^-1 (1/sqrt2)`


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


Domain and Rariges of cos–1 is:-


What is the principal value of cosec–1(2).


Find the principal value of `tan^-1 (sqrt(3))`


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


what is the value of `cos^-1 (cos  (13pi)/6)`


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


What is the values of `cos^-1 (cos  (7pi)/6)`


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f'(x) = x–1, then find f(x)


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


cos–1(cos10) is equal to ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If cos–1 x > sin–1 x, then ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×