हिंदी

In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin (A2). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.

योग

उत्तर

Given:

a = 18, b = 24 and c = 30

∴ 2s = a + b + c

= 18 + 24 + 30

= 72

∴ s = `72/2`

∴ s = 36

`sin  (A/2) = sqrt(((s - b)(s - c))/(bc)`

= `sqrt(((36 - 24)(36 - 30))/((24)(30)`

= `sqrt((12 xx 6)/(24 xx 30)`

= `sqrt(1/10)`

= `1/(sqrt10)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.2 [पृष्ठ ८८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Exercise 3.2 | Q 10.2 | पृष्ठ ८८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

Find the principal value of tan−1 (−1)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Find the principal value of `sin^-1(1/sqrt2)`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: tan- 1( - √3)


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


Evaluate:

`sin[cos^-1 (3/5)]`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of cosec–1(– 1)


Find the principal value of `tan^-1 (sqrt(3))`


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


Which of the following function has period 2?


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


The value of `sin^-1(cos  (53pi)/5)` is ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The domain of the function y = sin–1 (– x2) is ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


`"sin"^-1 (1/sqrt2)`


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


Which of the following functions is inverse of itself?


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


Find the principal value of `tan^-1 (sqrt(3))`


`sin(tan^-1x), |x| < 1` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


If f'(x) = x–1, then find f(x)


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×