Advertisements
Advertisements
प्रश्न
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
उत्तर
Let `sin^-1(1/sqrt(2)) = α, "where" - pi/(2) ≤ α ≤ pi/(2)`
∴ sin α = `(1)/sqrt(2) = sin pi/(4)`
∴ α = `pi/(4) ...[∵ - pi/(2) ≤ pi/(4) ≤ pi/(2)]`
∴ `sin^-1(1/sqrt(2)) = pi/(4)` ...(1)
Let `sin^-1(sqrt(3)/2) = β, "where" - pi/(2) ≤ β ≤ pi/(2)`
∴ sin β = `sqrt(3)/(2) = sin pi/(3)`
∴ β = `pi/(3) ...[∵ - pi/(2) ≤ pi/(3) ≤ pi/(2)]`
∴ `sin^-1(sqrt(3)/2) = pi/(3)` ...(2)
L.H.S. = `sin^-1(1/sqrt(2)) - 3sin^-1(sqrt(3)/2)`
= `pi/(4) - 3(pi/3)` ...[By (1) and (2)]
= `pi/(4) - pi`
= `-(3pi)/(4)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of tan−1 (−1)
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `sin^-1 1/sqrt(2)`
Which of the following function has period 2?
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of y = cos–1(x2 – 4) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"sin"^-1 (-1/2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
3 tan-1 a is equal to ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Values of tan–1 – sec–1(–2) is equal to
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If f'(x) = x–1, then find f(x)
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.