Advertisements
Advertisements
प्रश्न
Find the principal value of the following: tan-1(– 1)
उत्तर
The principal value branch of tan-1x is `(- π/2, π/2)`
Let tan-1(–1) = α, where `(-pi)/(2) ≤ α ≤ pi/(2)`
∴ tan α = – 1 = `-tan pi/(4)`
∴ tan α = `tan(- pi/4)` ...[ ∵ tan(– θ) = – tan θ]
∴ α = `- pi/(4) ...[ ∵ - pi/2 ≤ - pi/4 ≤ pi/2 ]`
∴ the principal value of tan-1(–1) is `-pi/(4)`.
APPEARS IN
संबंधित प्रश्न
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of cosec−1 (2)
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
If sin−1 x = y, then
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Find the set of values of `cosec^-1(sqrt3/2)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Find the principal value of the following:
`sin^-1 (- 1/2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of cosec–1(– 1)
Find the principal value of `sec^-1 (- sqrt(2))`
Find the principal value of `tan^-1 (sqrt(3))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The value of cot (- 1110°) is equal to ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
All trigonometric functions have inverse over their respective domains.
`"cos" 2 theta` is not equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
3 tan-1 a is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
Which of the following functions is inverse of itself?
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Find the value, if sin–1x = y, then `->`:-
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`