हिंदी

Sin−1x − cos−1x = π6, then x = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

sin−1x − cos−1x = `pi/6`, then x = ______

विकल्प

  • `1/2`

  • `sqrt(3)/2`

  • `-1/2`

  • `-sqrt(3)/2`

MCQ
रिक्त स्थान भरें

उत्तर

`sqrt(3)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - MCQ

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal value of `tan^(-1) (-sqrt3)`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


The principal value of sin−1`(1/2)` is ______


The principal value of cos−1`(-1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate:

`sin[cos^-1 (3/5)]`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Find the principal value of the following:

cosec-1 (2)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Evaluate:

`cos[tan^-1 (3/4)]`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `sec^-1 (- sqrt(2))`


Find the principal value of `tan^-1 (sqrt(3))`


The principle solutions of equation tan θ = -1 are ______ 


If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______


sin[3 sin-1 (0.4)] = ______.


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


`"sin"^-1 (-1/2)`


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


Values of tan–1 – sec–1(–2) is equal to


What is the values of `cos^-1 (cos  (7pi)/6)`


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×