हिंदी

In ΔABC, prove the following: cosAa+cosBb+cosCc=a2+b2+c22abc - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`

प्रमेय

उत्तर १

LHS = `(cos A)/a + (cos B)/b + (cos C)/c`

`= ((("b"^2 + "c"^2 - "a"^2)/"2bc"))/"a" + ((("c"^2 + "a"^2 - "b"^2)/"2ca"))/"b" + ((("a"^2 + "b"^2 - "c"^2)/"2ab"))/"c"`

`= ("b"^2 + "c"^2 - "a"^2)/"2abc" + ("c"^2 + "a"^2 - "b"^2)/"2abc" + ("a"^2 + "b"^2 - "c"^2)/"2abc"`

`= ("b"^2 + "c"^2 - "a"^2 + "c"^2 + "a"^2 - "b"^2 + "a"^2 + "b"^2 - "c"^2)/"2abc"`

`= ("a"^2 + "b"^2 + "c"^2)/"2abc"`

= RHS

shaalaa.com

उत्तर २

LHS = `(cos A)/a + (cos B)/b + (cos C)/c`

= `(b cos A + a cos B)/(ab) + (cos C)/c`

= `c/(ab) + (cos C)/c`    ...(By projection rule)

= `c/(ab) + (a^2 + b^2 - c^2)/(2 abc)`    ...(By cosine rule)

= `(2c^2 + a^2 + b^2 - c^2)/(2 abc)`

= `(a^2 + b^2 + c^2)/(2 abc)` = R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Miscellaneous exercise 3 [पृष्ठ १०९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 11.5 | पृष्ठ १०९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


The principal value of cos−1`(-1/2)` is ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

tan-1 (-1)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `cos^-1  sqrt(3)/2`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


The principal value of `tan^{-1(sqrt3)}` is ______  


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


The domain of the function y = sin–1 (– x2) is ______.


The domain of y = cos–1(x2 – 4) is ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.


`"sin"^-1 (-1/2)`


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


3 tan-1 a is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What will be the principal value of `sin^-1(-1/2)`?


Find the principal value of `tan^-1 (sqrt(3))`


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


What is the values of `cos^-1 (cos  (7pi)/6)`


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


cos–1(cos10) is equal to ______.


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Solve for x:

5tan–1x + 3cot–1x = 2π


Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×