Advertisements
Advertisements
प्रश्न
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
उत्तर
L.H.S. `cot(pi/4 - 2cot^-1 3)`
= `cot[tan^-1(1) - 2 tan^-1 1/3]` ......`[because cot^-1x = tan^-1 1/x]`
= `cot[tan^-1(1) - tan^-1 (2 xx 1/3)/(1 - (1/3)^2)]` ......`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `cot[tan^-1(1) - tan^-1 (2/3)/(8/9)]`
= `cot[tan^-1(1) - tan^-1 3/4]`
= `cot[tan^-1 ((1 - 3/4)/(1 + 1 xx 3/4))]`
= `cot[tan^-1 ((1/4)/(7/4))]`
= `cot[tan^-1 1/7]` ......`[because tan^-1 1/x = cot^-1x]`
= `cot[cot^-1 (7)]`
= 7 R.H.S
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of tan−1 (−1)
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
If sin−1 x = y, then
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: cosec- 1(2)
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
sin−1x − cos−1x = `pi/6`, then x = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Evaluate: sin`[1/2 cos^-1 (4/5)]`
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`sin(tan^-1x), |x| < 1` is equal to
If f'(x) = x–1, then find f(x)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.