Advertisements
Advertisements
प्रश्न
If f'(x) = x–1, then find f(x)
उत्तर
Given, f'(x) = `1/x`
On integrating both sides, we get
f(x) = logx + C
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
`tan^-1(tan (7pi)/6)` = ______
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
tan-1 (-1)
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Find the principal value of cosec–1(– 1)
Find the principal value of `sec^-1 (- sqrt(2))`
Find the principal value of `tan^-1 (sqrt(3))`
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
Which of the following functions is inverse of itself?
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Domain and Rariges of cos–1 is:-
What will be the principal value of `sin^-1(-1/2)`?
Find the value, if sin–1x = y, then `->`:-
Values of tan–1 – sec–1(–2) is equal to
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
cos–1(cos10) is equal to ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If cos–1 x > sin–1 x, then ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
If sin–1x – cos–1x = `π/6`, then x = ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Solve for x:
5tan–1x + 3cot–1x = 2π
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.