हिंदी

If tan−1x + tan−1y + tan−1z = π, then show that 1xy+1yz+1zx = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1

योग

उत्तर

tan−1x + tan−1y + tan−1z = π

∴ tan−1x + tan−1y = π − tan−1

∴ `tan^-1 ((x + y)/(1 - xy))` = π − tan−1

∴ `(x + y)/(1 - xy)` = tan(π − tan−1z) 

∴ `(x + y)/(1 - xy)` = −tan(tan−1z) 

∴ `(x + y)/(1 - xy)` = − z

∴ x + y = −z + xyz

∴ x + y + z = xyz

∴ `1/(yz) + 1/(xz) + 1/(xy)` = 1, i.e., `1/(xy) + 1/(yz) + 1/(zx)` = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - Short Answers II

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of `tan^(-1) (-sqrt3)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: tan- 1( - √3)


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:
tan 5θ = -1


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The principle solutions of equation tan θ = -1 are ______ 


If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


sin[3 sin-1 (0.4)] = ______.


Which of the following function has period 2?


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


The principal value of `tan^{-1(sqrt3)}` is ______  


`tan[2tan^-1 (1/3) - pi/4]` = ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


All trigonometric functions have inverse over their respective domains.


When `"x" = "x"/2`, then tan x is ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


`"sin"^-1 (1/sqrt2)`


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


3 tan-1 a is equal to ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


Which of the following functions is inverse of itself?


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


What is the value of `sin^-1(sin  (3pi)/4)`?


Find the value, if sin–1x = y, then `->`:-


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f'(x) = x–1, then find f(x)


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If cos–1 x > sin–1 x, then ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×