Advertisements
Advertisements
प्रश्न
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
उत्तर
Given: a = 18, b = 24 and c = 30
∴ 2s = a + b + c
= 18 + 24 + 30
= 72
∴ s = 36
cosA = `(b^2 + c^2 - a^2)/(2bc)`
= `((24)^2 + (30)^2 - (18)^2)/(2(24)(30)`
= `(576 + 900 - 324)/(1440)`
= `(1152)/(1440)`
= `4/5`.
APPEARS IN
संबंधित प्रश्न
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
If sin−1 x = y, then
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the principal value of `sin^-1(1/sqrt2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of sin−1`(1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the principal value of the following:
tan-1 (-1)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of cosec–1(– 1)
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
Which of the following function has period 2?
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
The domain of y = cos–1(x2 – 4) is ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"sin"^-1 (-1/2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Domain and Rariges of cos–1 is:-
what is the value of `cos^-1 (cos (13pi)/6)`
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
cos–1(cos10) is equal to ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
If sin–1x – cos–1x = `π/6`, then x = ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.