Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
उत्तर
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
= `tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
`=tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(-1)`
`=-tan^-1(1/sqrt3)-tan^-1(sqrt3)-tan^-1(1)`
`=-tan^-1(tan pi/6)-tan^-1(pi/3)-tan^-1(pi/4)`
`=-pi/6-pi/3-pi/4`
`=-(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of sin−1`(1/2)` is ______
Evaluate:
`sin[cos^-1 (3/5)]`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
When `"x" = "x"/2`, then tan x is ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
what is the value of `cos^-1 (cos (13pi)/6)`
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.