हिंदी

The principal value of sin−1(12) is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The principal value of sin−1`(1/2)` is ______

विकल्प

  • `pi/3`

  • `pi/6`

  • `(2pi)/3`

  • `(3pi)/2`

MCQ
रिक्त स्थान भरें

उत्तर

`pi/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Trigonometric Functions - MCQ

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of tan−1 (−1)


Find the principal value of `cot^(-1) (sqrt3)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

If sin−1 x = y, then


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate:

`sin[cos^-1 (3/5)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Find the principal value of the following:

tan-1 (-1)


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of `sec^-1 (- sqrt(2))`


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


sin[3 sin-1 (0.4)] = ______.


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


Which of the following functions is inverse of itself?


What is the value of `sin^-1(sin  (3pi)/4)`?


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


cos–1(cos10) is equal to ______.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If cos–1 x > sin–1 x, then ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×