Advertisements
Advertisements
प्रश्न
Find the principal value of tan−1 (−1)
उत्तर
Let tan−1 (−1) = y. Then tan y = -1 = `-tan (pi/2) = tan (-pi/2)`
We know that the range of the principal value branch of tan−1 is
`(-pi/2, pi/2) and tan(-pi/4) = - 1`
Whare `-pi/4 ∈ (-pi/2, pi/2)`
Therefore, the principal value of `tan^(-1) (-1) " is " pi/4.`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of sin−1`(1/2)` is ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of `sin^-1 1/sqrt(2)`
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
Find the value, if sin–1x = y, then `->`:-
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Solve for x:
5tan–1x + 3cot–1x = 2π