हिंदी

In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)

योग

उत्तर

Given: a = 18, b = 24 and c = 30
∴ 2s = a + b + c
= 18 + 24 + 30
= 72
∴ s = 36

`A(ΔABC) = sqrt(s(s - a)(s - b)(s - c)`
`= sqrt(36(36 - 18)(36 - 24)(36 - 30)`

`= sqrt(36 xx 18 xx 12 xx 6)`

`= sqrt(36 xx 18 xx 4 xx 18)`

= 6 x 18 x 2

= 216 sq units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.2 [पृष्ठ ८८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Exercise 3.2 | Q 10.5 | पृष्ठ ८८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the value of the following:

If sin−1 x = y, then


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


`sin^-1  1/2-2sin^-1  1/sqrt2`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


`tan^-1(tan  (7pi)/6)` = ______


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `sec^-1 (- sqrt(2))`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


Which of the following function has period 2?


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


`cos^-1  4/5 + tan^-1  3/5` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of y = cos–1(x2 – 4) is ______.


`"cos"  2 theta` is not equal to ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


3 tan-1 a is equal to ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


What is the value of `sin^-1(sin  (3pi)/4)`?


What will be the principal value of `sin^-1(-1/2)`?


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×