Advertisements
Advertisements
प्रश्न
`tan^-1(tan (7pi)/6)` = ______
विकल्प
`- pi/6`
`pi/6`
`(13pi)/6`
`(5pi)/6`
उत्तर
`pi/6`
APPEARS IN
संबंधित प्रश्न
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
The principal value of sin−1`(1/2)` is ______
The principal value of cos−1`(-1/2)` is ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
cosec-1 (2)
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
The principle solutions of equation tan θ = -1 are ______
sin[3 sin-1 (0.4)] = ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
Domain and Rariges of cos–1 is:-
Find the principal value of `tan^-1 (sqrt(3))`
Values of tan–1 – sec–1(–2) is equal to
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`