हिंदी

If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = ππ2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`

योग

उत्तर

Let sin–1 x = θ, where x ∈ [–1, 1] and `θ ∈ [-π/2, π/2]`

∴ `- θ ∈ [-π/2, π/2]`

∴ `π/2 - θ ∈ [0, π]`, the principal domain of the cosine function.

∴ `cos(π/2 - θ)` = sin θ

`cos(π/2 - θ)` = x

∴ cos–1 x = `π/2 - θ`

∴ `θ + cos^-1x = π/2`

∴ sin–1 x + cos–1 x = `π/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


Find the principal solutions of the following equation:
tan 5θ = -1


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate:

`cos[tan^-1 (3/4)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `sec^-1 (- sqrt(2))`


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of y = cos–1(x2 – 4) is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


`"cos"  2 theta` is not equal to ____________.


When `"x" = "x"/2`, then tan x is ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.


`"sin"^-1 (-1/2)`


`"sin"^-1 (1/sqrt2)`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


Which of the following functions is inverse of itself?


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


What is the value of `sin^-1(sin  (3pi)/4)`?


Domain and Rariges of cos–1 is:-


What will be the principal value of `sin^-1(-1/2)`?


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If f'(x) = x–1, then find f(x)


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If cos–1 x > sin–1 x, then ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×