Advertisements
Advertisements
प्रश्न
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
उत्तर
`sqrt(5^2 - 4^2)` = 3
cos A = `"Adj"/"Hyp" = 3/5`
Let `sin^-1 (4/5)` = A
sin A = `4/5`
∴ cos A = `3/5`
`sqrt(169 - 144) = sqrt 25` = 5
cos B = `"Adj"/"Hyp" = 5/13`
Let `sin^-1 (12/13)` = B
`12/13` = sin B
sin B = `12/13`
∴ cos B = `5/13`
Now `cos (sin^-1 (4/5) + sin^-1 (12/13))` = cos (A + B)
= cos A cos B – sin A sin B
`= 3/5 xx 5/13 - 4/5 xx 12/13`
`= 15/65 - 48/65`
`= - 33/65`
APPEARS IN
संबंधित प्रश्न
Find the principal value of cosec−1 (2)
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
`tan^-1(tan (7pi)/6)` = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
What is the value of `sin^-1(sin (3pi)/4)`?