हिंदी

Find the principal solutions of the following equation:tan 5θ = -1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the principal solutions of the following equation:
tan 5θ = -1

योग

उत्तर

tan 5θ = -1

tan 5θ = `-tan  pi/4` ...`(∵ tan  pi/4 = 1)`

tan 5θ = `tan(pi - pi/4)` ....`(∵ -tanθ = tan (pi - θ))`

∴ tan 5θ = `tan ((3pi)/4)`

tan θ  = tanα ⇒ θ  = nπ + α, n ∈ 2

∴ 5θ = `"n"pi + (3pi)/4`, n ∈ 2

∴ θ = `("n"pi)/5 + (3pi)/20`, n ∈ 2

Put n = 0, θ = `(3pi)/20` ∈ [0, 2π)

Put n = 1, θ = `(pi)/5 + (3pi)/20 = (4pi + 3pi)/20 = (7pi)/20` ∈ [0, 2π)

Put n = 2, θ = `(2pi)/5 + (3pi)/20 = (8pi + 3pi)/20 = (11pi)/20` ∈ [0, 2π)

Put n = 3, θ = `(3pi)/5 + (3pi)/20 = (12pi + 3pi)/20 = (15pi)/20` ∈ [0, 2π)

Put n = 4, θ = `(4pi)/5 + (3pi)/20 = (16pi + 3pi)/20 = (19pi)/20` ∈ [0, 2π)

Put n = 5, θ = `(5pi)/5 + (3pi)/20 = (20pi + 3pi)/20 = (23pi)/20` ∈ [0, 2π)

Put n = 6, θ = `(6pi)/5 + (3pi)/20 = (24pi + 3pi)/20 = (27pi)/20` ∈ [0, 2π)

Put n = 7, θ = `(7pi)/5 + (3pi)/20 = (28pi + 3pi)/20 = (31pi)/20` ∈ [0, 2π)

Put n = 8, θ = `(8pi)/5 + (3pi)/20 = (32pi + 3pi)/20 = (35pi)/20` ∈ [0, 2π)

Put n = 9, θ = `(9pi)/5 + (3pi)/20 = (36pi + 3pi)/20 = (39pi)/20` ∈ [0, 2π)

Put n = 10, θ = `(10pi)/5 + (3pi)/20 = (43pi)/20` ∉ [0, 2π)

∴ `{(3π)/20, (7π)/20, (11π)/20, (15π)/20, (19π)/20, (23π)/20, (27π)/20, (31π)/20, (35π)/20, (39π)/20}`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Miscellaneous exercise 3 [पृष्ठ १०८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 2.2 | पृष्ठ १०८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: cos- 1`(-1/2)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


Find the principal solutions of the following equation:

cot 2θ = 0.


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Evaluate:

`cos[tan^-1 (3/4)]`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of `tan^-1 (sqrt(3))`


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


When `"x" = "x"/2`, then tan x is ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


Find the principal value of `tan^-1 (sqrt(3))`


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


If f'(x) = x–1, then find f(x)


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×