English

Find the principal solutions of the following equation:tan 5θ = -1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the principal solutions of the following equation:
tan 5θ = -1

Sum

Solution

tan 5θ = -1

tan 5θ = `-tan  pi/4` ...`(∵ tan  pi/4 = 1)`

tan 5θ = `tan(pi - pi/4)` ....`(∵ -tanθ = tan (pi - θ))`

∴ tan 5θ = `tan ((3pi)/4)`

tan θ  = tanα ⇒ θ  = nπ + α, n ∈ 2

∴ 5θ = `"n"pi + (3pi)/4`, n ∈ 2

∴ θ = `("n"pi)/5 + (3pi)/20`, n ∈ 2

Put n = 0, θ = `(3pi)/20` ∈ [0, 2π)

Put n = 1, θ = `(pi)/5 + (3pi)/20 = (4pi + 3pi)/20 = (7pi)/20` ∈ [0, 2π)

Put n = 2, θ = `(2pi)/5 + (3pi)/20 = (8pi + 3pi)/20 = (11pi)/20` ∈ [0, 2π)

Put n = 3, θ = `(3pi)/5 + (3pi)/20 = (12pi + 3pi)/20 = (15pi)/20` ∈ [0, 2π)

Put n = 4, θ = `(4pi)/5 + (3pi)/20 = (16pi + 3pi)/20 = (19pi)/20` ∈ [0, 2π)

Put n = 5, θ = `(5pi)/5 + (3pi)/20 = (20pi + 3pi)/20 = (23pi)/20` ∈ [0, 2π)

Put n = 6, θ = `(6pi)/5 + (3pi)/20 = (24pi + 3pi)/20 = (27pi)/20` ∈ [0, 2π)

Put n = 7, θ = `(7pi)/5 + (3pi)/20 = (28pi + 3pi)/20 = (31pi)/20` ∈ [0, 2π)

Put n = 8, θ = `(8pi)/5 + (3pi)/20 = (32pi + 3pi)/20 = (35pi)/20` ∈ [0, 2π)

Put n = 9, θ = `(9pi)/5 + (3pi)/20 = (36pi + 3pi)/20 = (39pi)/20` ∈ [0, 2π)

Put n = 10, θ = `(10pi)/5 + (3pi)/20 = (43pi)/20` ∉ [0, 2π)

∴ `{(3π)/20, (7π)/20, (11π)/20, (15π)/20, (19π)/20, (23π)/20, (27π)/20, (31π)/20, (35π)/20, (39π)/20}`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Miscellaneous exercise 3 [Page 108]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 2.2 | Page 108

RELATED QUESTIONS

Find the principal values of `sin^(-1) (-1/2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of cos−1`(-1/2)` is ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The value of cot (- 1110°) is equal to ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


`cos^-1  4/5 + tan^-1  3/5` = ______.


The domain of the function y = sin–1 (– x2) is ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"tan"^-1 (sqrt3)`


`"sin"^-1 (1/sqrt2)`


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the principal value of cosec–1(2).


Find the principal value of `tan^-1 (sqrt(3))`


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


cos–1(cos10) is equal to ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×