Advertisements
Advertisements
Question
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Solution
Let `tan^-1(sqrt(3)) = α, "where" (-pi)/(2) < α < pi/(2)`
∴ tan α = √3 = tan `pi/(3)`
∴ α = `pi/(3) ...[∵ (-pi)/(2) < pi/(3) < pi/(2)]`
∴ `tan^-1(√3) = pi/(3)` ...(1)
Let sec-1(– 2) = β, where 0 ≤ β ≤ π, β ≠ `pi/(2)`
∴ sec β = – 2 = `- sec (pi)/(3)`
∴ sec β = `sec(pi - pi/3)` ...[∵ sec(π – θ) = – secθ]
∴ sec β = `sec (2pi)/(3)`
∴ β = `(2pi)/(3) ...[∵ 0 ≤ (2pi)/(3) ≤ pi]`
∴ sec– 1(– 2) = `(2pi)/(3)` ...(2)
∴ `tan^-1(√3) - sec^-1(-2)`
= `pi/(3) - (2pi)/(3)` ...[By (1) and (2)]
= `-(pi)/(3)`.
APPEARS IN
RELATED QUESTIONS
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cot^(-1) (sqrt3)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
sin−1x − cos−1x = `pi/6`, then x = ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Find the principal value of cosec–1(– 1)
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
The principle solutions of equation tan θ = -1 are ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
sin[3 sin-1 (0.4)] = ______.
The value of cot (- 1110°) is equal to ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of y = cos–1(x2 – 4) is ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
When `"x" = "x"/2`, then tan x is ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"tan"^-1 (sqrt3)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the value of `sin^-1(sin (3pi)/4)`?
What is the principal value of cosec–1(2).
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
Solve for x:
5tan–1x + 3cot–1x = 2π