Advertisements
Advertisements
Question
Find the principal value of cosec–1(– 1)
Solution
Let y = cosec–1(– 1)
Where `- pi/2 ≤ y ≤ pi/2`
cosec y = – 1
`1/("cosec" y) = 1/(-1)`
⇒ sin y = – 1
= `sin (- pi/2)`
⇒ y = `- pi/2`
∴ The principal value of cosec–1(– 1) = `- pi/2`
APPEARS IN
RELATED QUESTIONS
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
The domain of y = cos–1(x2 – 4) is ______.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin"^-1 (1/sqrt2)`
3 tan-1 a is equal to ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.