Advertisements
Advertisements
Question
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solution
Given tan-1 (2x) + tan-1 (3x) = `pi/4`
`tan^-1 [(2x + 3x)/(1 - (2x)(3x))] = pi/4`
`tan^-1 [(5x)/(1 - 6x^2)] = pi/4`
`(5x)/(1 - 6x^2) = tan pi/4`
`(5x)/(1 - 6x^2)` = 1
⇒ 5x = 1(1 – 6x2)
⇒ 6x2 + 5x – 1 = 0
⇒ (x + 1) (6x – 1) = 0
⇒ x + 1 = 0 (or) 6x – 1 = 0
⇒ x = -1 (or) x = `1/6`
x = -1 is rejected. It doesn’t satisfies the question.
APPEARS IN
RELATED QUESTIONS
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of the following:
tan-1 (-1)
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The domain of y = cos–1(x2 – 4) is ______.
`"sin" 265° - "cos" 265°` is ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0