Advertisements
Advertisements
Question
Find the principal value of `sec^-1 (- sqrt(2))`
Solution
Let y = `sec^-1 (- sqrt(2))`
Where 0 ≤ y ≤ π
sec y = `- sqrt(2)`
`y +- pi/2`
`1/sec y = - 1/sqrt(2)`
cos y = `- 1/sqrt(2)`
∴ The principal value of `sec^-1 (- sqrt(2)) = (3pi)/4`
APPEARS IN
RELATED QUESTIONS
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Which of the following function has period 2?
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
`"tan"^-1 (sqrt3)`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If sin–1x – cos–1x = `π/6`, then x = ______.