Advertisements
Advertisements
Question
Find the principal value of `sec^(-1) (2/sqrt(3))`
Solution
Let `sec^(-1) (2/sqrt3) = y, `
`" Then " sec y = 2/sqrt3= sec y(pi/6)`
We know that the range of the principal value branch of sec−1 is
`[0,pi] - {pi/2}`
`"Then" sec (pi/6) = 2/sqrt3`
Therefore, the principal value of `sec^(-1) (2/sqrt3) "is" pi/6`
APPEARS IN
RELATED QUESTIONS
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Find the principal value of the following: cosec- 1(2)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
The principal value of sin−1`(1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `tan^-1 (sqrt(3))`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"sin"^-1 (1/sqrt2)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.