English

Find the principal value of sec-1(23) - Mathematics

Advertisements
Advertisements

Question

Find the principal value of  `sec^(-1) (2/sqrt(3))`

Sum

Solution

Let `sec^(-1) (2/sqrt3) = y, `

`" Then " sec y = 2/sqrt3= sec y(pi/6)`

We know that the range of the principal value branch of sec−1 is

`[0,pi] - {pi/2}`

`"Then"  sec (pi/6) =  2/sqrt3`

Therefore, the principal value of  `sec^(-1) (2/sqrt3) "is" pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.1 [Page 42]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.1 | Q 7 | Page 42

RELATED QUESTIONS

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `tan^-1 (sqrt(3))`


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"^-1 (1/sqrt2)`


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×