English

Prove That: Cot−1 7 + Cot​−1 8 + Cot​−1 18 = Cot​−1 3 . - Mathematics

Advertisements
Advertisements

Question

Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .

Solution

Solving L.H.S, we get:

\[\cot^{- 1} 7 + \cot^{- 1} 8 + \cot^{- 1} 18 = \tan^{- 1} \frac{1}{7} + \tan^{- 1} \frac{1}{8} + \tan^{- 1} \frac{1}{18}\]

\[\left\{ \text { Using, }\tan^{- 1} A + \tan^{- 1} B = \tan^{- 1} \left( \frac{A + B}{1 - AB} \right) \right\}\]

\[ = \tan^{- 1} \left( \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7}\left( \frac{1}{8} \right)} \right) + \tan^{- 1} \frac{1}{18}\]

\[ = \tan^{- 1} \left( \frac{15}{56 - 1} \right) + \tan^{- 1} \frac{1}{18}\]

\[ = \tan^{- 1} \frac{3}{11} + \tan^{- 1} \frac{1}{18}\]

\[ = \tan^{- 1} \left( \frac{\frac{3}{11} + \frac{1}{18}}{1 - \left( \frac{3}{11} \right)\frac{1}{18}} \right)\]

\[ = \tan^{- 1} \left( \frac{54 + 11}{198 - 3} \right)\]

\[ = \tan^{- 1} \left( \frac{65}{195} \right)\]

\[ = \tan^{- 1} \frac{1}{3}\]

\[ = \cot^{- 1} \left( 3 \right) = RHS\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Foreign Set 1

RELATED QUESTIONS

Find the principal value of cosec−1 (2)


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


The principal value of cos−1`(-1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Evaluate:

`cos[tan^-1 (3/4)]`


The value of `sin^-1(cos  (53pi)/5)` is ______ 


All trigonometric functions have inverse over their respective domains.


`"tan"^-1 (sqrt3)`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


`sin(tan^-1x), |x| < 1` is equal to


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×