Advertisements
Advertisements
Question
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Solution
Solving L.H.S, we get:
\[\cot^{- 1} 7 + \cot^{- 1} 8 + \cot^{- 1} 18 = \tan^{- 1} \frac{1}{7} + \tan^{- 1} \frac{1}{8} + \tan^{- 1} \frac{1}{18}\]
\[\left\{ \text { Using, }\tan^{- 1} A + \tan^{- 1} B = \tan^{- 1} \left( \frac{A + B}{1 - AB} \right) \right\}\]
\[ = \tan^{- 1} \left( \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7}\left( \frac{1}{8} \right)} \right) + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \left( \frac{15}{56 - 1} \right) + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \frac{3}{11} + \tan^{- 1} \frac{1}{18}\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11} + \frac{1}{18}}{1 - \left( \frac{3}{11} \right)\frac{1}{18}} \right)\]
\[ = \tan^{- 1} \left( \frac{54 + 11}{198 - 3} \right)\]
\[ = \tan^{- 1} \left( \frac{65}{195} \right)\]
\[ = \tan^{- 1} \frac{1}{3}\]
\[ = \cot^{- 1} \left( 3 \right) = RHS\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the principal value of cosec−1 (2)
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
The principal value of cos−1`(-1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Evaluate:
`cos[tan^-1 (3/4)]`
The value of `sin^-1(cos (53pi)/5)` is ______
All trigonometric functions have inverse over their respective domains.
`"tan"^-1 (sqrt3)`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the value of `sin^-1(sin (3pi)/4)`?
`sin(tan^-1x), |x| < 1` is equal to
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1