Advertisements
Advertisements
Question
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Solution
LHS = `tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x)))`
Put x = cos θ
∴ θ = cos–1x
∴ LHS = `tan^-1 ((sqrt(1 + cos theta) - sqrt(1 - cos theta))/(sqrt(1 + cos theta) + sqrt(1 - cos theta)))`
= `tan^-1 [(sqrt(2 cos^2(theta/2)) - sqrt(2 sin^2 (theta/2)))/(sqrt(2 cos^2 (theta/2)) + sqrt(2 sin^2 (theta/2)))]`
= `tan^-1 [(sqrt(2) cos (theta/2) - sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2) + sqrt(2) sin (theta/2))]`
= `tan^-1 [((sqrt(2) cos (theta/2))/(sqrt(2) cos (theta/2)) - (sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2)))/((sqrt(2) cos (theta/2))/(sqrt(2) cos (theta/2)) + (sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2)))]`
= `tan^-1 [(1 - tan(theta/2))/(1 + tan (theta/2))]`
= `tan^-1 [(tan pi/4 - tan (theta/2))/(1 + tan pi/4. tan (theta/2))]` .....`[∵ tan pi/4 =1]`
= `tan^-1 [tan (pi/4 - theta/2)]`
= `pi/4 - theta/2`
= `pi/4 - 1/2 cos^-1`x .....[∵ θ = cos–1x]
= RHS.
RELATED QUESTIONS
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
The principal value of sin−1`(1/2)` is ______
The principal value of cos−1`(-1/2)` is ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
Which of the following function has period 2?
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function y = sin–1 (– x2) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
All trigonometric functions have inverse over their respective domains.
`"cos" 2 theta` is not equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"tan"^-1 (sqrt3)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
Which of the following functions is inverse of itself?
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the value of `sin^-1(sin (3pi)/4)`?
What will be the principal value of `sin^-1(-1/2)`?
What is the principal value of cosec–1(2).
Find the principal value of `tan^-1 (sqrt(3))`
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
What is the values of `cos^-1 (cos (7pi)/6)`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
cos–1(cos10) is equal to ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
If sin–1x – cos–1x = `π/6`, then x = ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.