Advertisements
Advertisements
Question
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Solution
Let tan- 1(1) = α, where `(-pi)/(2) < α < pi/(2)`
∴ tan α = 1 = `tan pi/(4)`
∴ α = `pi/(4) ...[∵ (-pi)/(2) < pi/(4) < pi/(2)]`
∴ tan– 1(1) = `pi/(4)` ...(1)
Let `cos^-1(1/2)` = β, where 0 ≤ β ≤ π
∴ cos β = `1/2 = cos (pi)/(3)`
∴ β = `pi/(3) ...[∵ 0 < pi/(3) < pi]`
∴ `cos^-1(1/2) = pi/(3)` ...(2)
Let `sin^-1(1/2) = γ, "where" (-pi)/(2) ≤ γ ≤ pi/(2)`
∴ sin γ = `(1)/(2) = sin (pi)/(6)`
∴ γ = `pi/(6) ...[∵ (-pi)/(2) ≤ pi/(6) ≤ pi/(2)]`
∴ `sin^-1(1/2) = pi/(6)` ...(3)
∴ `tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
= `pi/(4) + pi/(3) + pi/(6)` ...[By (1), (2) and (3)]
= `(3pi + 4pi + 2pi)/(12)`
= `(9pi)/(12)`
= `(3pi)/(4)`.
APPEARS IN
RELATED QUESTIONS
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cosec^(-1)(-sqrt2)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Find the principal value of `cos^-1 sqrt(3)/2`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
The value of cot (- 1110°) is equal to ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"cos" 2 theta` is not equal to ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (-1/2)`
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
Domain and Rariges of cos–1 is:-
What will be the principal value of `sin^-1(-1/2)`?
Values of tan–1 – sec–1(–2) is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
What is the values of `cos^-1 (cos (7pi)/6)`
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If f'(x) = x–1, then find f(x)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.