English

Find the principal solutions of the following equation: sin 2θ = -1√2. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`

Sum

Solution

sin 2θ = `− 1/(sqrt2)`

Since, θ ∈ (0, 2π), 2θ ∈ (0, 4π)

`∴ sin 2θ = − 1/(sqrt2) = − sin  π/4 = sin (π + π/4) = sin (2π − π/4) = sin (3π + π/4) = sin (4π − π/4)  ...[∵ sin (π + θ) = sin (2π − θ) = sin (3π + θ) = sin (4π − θ) = − sin θ]`


∴ `sin 2θ = sin  (5π)/4  = sin  (7π)/4 = sin  (13π)/4 = sin  (15π)/4`


∴ `2θ = (5π)/4  or 2θ = (7π)/4  or 2θ = (13π)/4 or 2θ = (15π)/4`


∴ `θ = (5π)/8  or θ = (7π)/8  or θ = (13π)/8 or θ = (15π)/8`


Hence, the required principal solutions are `{(5π)/8, (7π)/8, (13π)/8, (15π)/8}`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Miscellaneous exercise 3 [Page 108]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 2.1 | Page 108

RELATED QUESTIONS

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of cosec−1 (2)


Find the principal value of  `cos^(-1) (-1/2)`


Find the value of the following:

If sin−1 x = y, then


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: tan- 1( - √3)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


sin−1x − cos−1x = `pi/6`, then x = ______


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of `sec^-1 (- sqrt(2))`


Find the principal value of `tan^-1 (sqrt(3))`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______


Which of the following function has period 2?


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


All trigonometric functions have inverse over their respective domains.


`"cos"  2 theta` is not equal to ____________.


When `"x" = "x"/2`, then tan x is ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


`"sin"^-1 (-1/2)`


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


What is the principal value of cosec–1(2).


Find the principal value of `tan^-1 (sqrt(3))`


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


What is the values of `cos^-1 (cos  (7pi)/6)`


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


If cos–1 x > sin–1 x, then ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×