Advertisements
Advertisements
Question
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Solution
Let `cos^-1(1/2)` = α, where 0 ≤ α ≤ π
∴ cos α = `1/2 = cos (pi)/(3)`
∴ α = `pi/(3) ...[∵ 0 < pi/(3) < pi]`
∴ `cos^-1(1/2) = pi/(3)` ...(1)
Let `sin^-1(1/2) = β, "where" (-pi)/(2) ≤ β ≤ pi/(2)`
∴ sin β = `(1)/(2) = sin (pi)/(6)`
∴ β = `pi/(6) ...[∵ (-pi)/(2) ≤ pi/(6) ≤ pi/(2)]`
∴ `sin^-1(1/2) = pi/(6)` ...(2)
`cos^-1(1/2) = pi/(3) and sin^-1(1/2) = pi/(6)`
∴ `cos^-1(1/2) + 2sin^-1(1/2)`
= `pi/(3) + 2(pi/6)`
= `pi/(3) + pi/(3)`
= `(2pi)/(3)`.
APPEARS IN
RELATED QUESTIONS
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the principal value of `sin^-1(1/sqrt2)`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cosec- 1(2)
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
tan 5θ = -1
The principal value of sin−1`(1/2)` is ______
The principal value of cos−1`(-1/2)` is ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
cosec-1 (2)
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of cosec–1(– 1)
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
Which of the following function has period 2?
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"cos" 2 theta` is not equal to ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
Find the principal value of `tan^-1 (sqrt(3))`
what is the value of `cos^-1 (cos (13pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
cos–1(cos10) is equal to ______.
If cos–1 x > sin–1 x, then ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.