English

Prove that sin [tan-1(1-x22x)+cos-1(1-x21+x2)] = 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1

Sum

Solution

L.H.S. = sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]`

Substituting x = tan θ, we get

L.H.S. = sin `[tan^-1 ((1 - tan^2theta)/(2tantheta)) + cos^-1 ((1 - tan^2theta)/(1 + tan^2theta))]`

= `sin[tan^-1 (1/tan 2theta) + cos^(-1) (cos 2theta)]`

= `sin[tan^-1 (cot 2theta) + cos^-1 (cos 2theta)]`

= `sin[tan^-1 {tan (pi/2 - 2theta)} + 2theta]`

= `sin(pi/2 - 2theta + 2theta)`

= `sin(pi/2)`

= 1

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.3: Trigonometric Functions - Short Answers II

APPEARS IN

RELATED QUESTIONS

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


`tan^-1(tan  (7pi)/6)` = ______


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `cos^-1  sqrt(3)/2`


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


The value of cot (- 1110°) is equal to ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


All trigonometric functions have inverse over their respective domains.


When `"x" = "x"/2`, then tan x is ____________.


`"sin"^-1 (-1/2)`


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


What is the value of `sin^-1(sin  (3pi)/4)`?


What is the principal value of cosec–1(2).


`sin(tan^-1x), |x| < 1` is equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


What is the values of `cos^-1 (cos  (7pi)/6)`


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


cos–1(cos10) is equal to ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


If cos–1 x > sin–1 x, then ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×