Advertisements
Advertisements
Question
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Solution
L.H.S. = sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]`
Substituting x = tan θ, we get
L.H.S. = sin `[tan^-1 ((1 - tan^2theta)/(2tantheta)) + cos^-1 ((1 - tan^2theta)/(1 + tan^2theta))]`
= `sin[tan^-1 (1/tan 2theta) + cos^(-1) (cos 2theta)]`
= `sin[tan^-1 (cot 2theta) + cos^-1 (cos 2theta)]`
= `sin[tan^-1 {tan (pi/2 - 2theta)} + 2theta]`
= `sin(pi/2 - 2theta + 2theta)`
= `sin(pi/2)`
= 1
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
`tan^-1(tan (7pi)/6)` = ______
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `cos^-1 sqrt(3)/2`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
The value of cot (- 1110°) is equal to ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^-1 (-1/2)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
What is the value of `sin^-1(sin (3pi)/4)`?
What is the principal value of cosec–1(2).
`sin(tan^-1x), |x| < 1` is equal to
what is the value of `cos^-1 (cos (13pi)/6)`
What is the values of `cos^-1 (cos (7pi)/6)`
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
cos–1(cos10) is equal to ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
If cos–1 x > sin–1 x, then ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.