Advertisements
Advertisements
Question
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Solution
L.H.S. = `2 tan^-1 (1/8) + tan^-1 (1/7) + 2 tan^-1 (1/5)`
= `2[tan^-1 (1/8) + tan^-1 (1/5)] + tan^-1 (1/7)`
= `2[tan^-1 ((1/8 + 1/5)/(1 - 1/8 xx 1/5))] + tan^-1 (1/7)`
= `2[tan^-1 ((13/40)/(39/40))] + tan^-1 (1/7)`
= `2tan^-1 (1/3) + tan^-1 (1/7)`
= `tan^-1 (1/3) + tan^-1 (1/3) + tan^-1 (1/7)`
= `tan^-1 ((1/3 + 1/3)/(1 - 1/3 xx 1/3)) + tan^-1 (1/7)`
= `tan^-1 ((2/3)/(8/9)) + tan^-1 (1/7)`
= `tan^-1 (3/4) + tan^-1 (1/7)`
= `tan^-1 ((3/4 + 1/7)/(1 - 3/4 xx 1/7))`
= `tan^-1 ((25/28)/(25/28))`
= `tan^-1 (1)`
= `pi/4`
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x)=sin^-1x^2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cosec- 1(2)
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sec^-1 (- sqrt(2))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function y = sin–1 (– x2) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
`"cos" 2 theta` is not equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (-1/2)`
`"sin"^-1 (1/sqrt2)`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
What is the value of `sin^-1(sin (3pi)/4)`?
What will be the principal value of `sin^-1(-1/2)`?
Find the principal value of `tan^-1 (sqrt(3))`
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If f'(x) = x–1, then find f(x)
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
If cos–1 x > sin–1 x, then ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`