English

In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin (A2). - Mathematics and Statistics

Advertisements
Advertisements

Question

In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.

Sum

Solution

Given:

a = 18, b = 24 and c = 30

∴ 2s = a + b + c

= 18 + 24 + 30

= 72

∴ s = `72/2`

∴ s = 36

`sin  (A/2) = sqrt(((s - b)(s - c))/(bc)`

= `sqrt(((36 - 24)(36 - 30))/((24)(30)`

= `sqrt((12 xx 6)/(24 xx 30)`

= `sqrt(1/10)`

= `1/(sqrt10)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.2 [Page 88]

RELATED QUESTIONS

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: tan- 1( - √3)


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


Find the principal solutions of the following equation:
tan 5θ = -1


`tan^-1(tan  (7pi)/6)` = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of cosec–1(– 1)


Find the principal value of `sec^-1 (- sqrt(2))`


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


sin[3 sin-1 (0.4)] = ______.


Which of the following function has period 2?


The principal value of `tan^{-1(sqrt3)}` is ______  


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


The domain of y = cos–1(x2 – 4) is ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


`"cos"  2 theta` is not equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


What will be the principal value of `sin^-1(-1/2)`?


Find the principal value of `tan^-1 (sqrt(3))`


`sin(tan^-1x), |x| < 1` is equal to


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×