Advertisements
Advertisements
प्रश्न
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
उत्तर
Given:
a = 18, b = 24 and c = 30
∴ 2s = a + b + c
= 18 + 24 + 30
= 72
∴ s = `72/2`
∴ s = 36
`sin (A/2) = sqrt(((s - b)(s - c))/(bc)`
= `sqrt(((36 - 24)(36 - 30))/((24)(30)`
= `sqrt((12 xx 6)/(24 xx 30)`
= `sqrt(1/10)`
= `1/(sqrt10)`
संबंधित प्रश्न
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: tan- 1( - √3)
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
tan 5θ = -1
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"sin"^-1 (-1/2)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the value of `sin^-1(sin (3pi)/4)`?
Find the principal value of `tan^-1 (sqrt(3))`
Values of tan–1 – sec–1(–2) is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If f'(x) = x–1, then find f(x)
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`