Advertisements
Advertisements
प्रश्न
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
उत्तर
L.H.S. = `2tan^-1(1/3)`
`= tan^-1[(2(1/3))/(1 - (1/3)^2)] ...[∵ 2tan^-1 x = tan^-1((2x)/(1 - x^2))]`
= `tan^-1[((2/3))/(1 - 1/9)]`
= `tan^-1(2/3 xx 9/8)`
= `tan^-1(3/4)`
= R.H.S.
Alternative Method:
L.H.S. = `2tan^-1(1/3) = tan^-1(1/3) + tan^-1(1/3)`
= `tan^-1[(1/3 + 1/3)/(1 - 1/3 xx 1/3)]`
= `tan^-1((3 + 3)/(9 - 1))`
= `tan^-1(6/8)`
= `tan^-1(3/4)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
sin−1x − cos−1x = `pi/6`, then x = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of `sec^-1 (- sqrt(2))`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
Which of the following function has period 2?
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`"sin"^-1 (1/sqrt2)`
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
3 tan-1 a is equal to ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
`sin(tan^-1x), |x| < 1` is equal to
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f'(x) = x–1, then find f(x)
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
sin [cot–1 (cos (tan–1 x))] = ______.
If cos–1 x > sin–1 x, then ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`