Advertisements
Advertisements
प्रश्न
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
उत्तर
We know that cos−1 (cos x) = x if `x in [0,pi]`, which is the principal value branch of cos −1x.
Here, `(13pi)/6 !in [0 ,pi]`
Now `cos^(-1) (cos (13pi)/6)` can be written as
`cos^(-1) (cos (13pi)/6) `
`= cos^(-1) [cos(2pi + pi/6)]`
` = cos^(-1) [cos(pi/6)], " where " pi/6 in [0, pi]`
`:. cos^(-1) (cos (13pi)/6) `
`= cos^(-1)[cos (pi/6)] `
`= pi/6`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the principal value of `sin^-1(1/sqrt2)`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
cot 2θ = 0.
`tan^-1(tan (7pi)/6)` = ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Evaluate:
`cos[tan^-1 (3/4)]`
The value of cot (- 1110°) is equal to ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
All trigonometric functions have inverse over their respective domains.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
Which of the following functions is inverse of itself?
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What will be the principal value of `sin^-1(-1/2)`?
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
cos–1(cos10) is equal to ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.